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The development of spatiotemporal dynamics of oscillatory activity  

in hiPSC-derived cortical tissue 

Abstract 
Coordinated neuronal activity is a characteristic and emergent feature in brain recordings. 
Human induced pluripotent stem cell (hiPSC) cultures offer a promising platform to identify the 
molecular and neural circuit origins of coordinated activity patterns, with unprecedented 
spatiotemporal resolution in human neural tissue, during pre-birth stages that are otherwise 
difficult to study during fetal cortex development. A growing body of work using human brain 
recordings has identified traveling waves, which are spatiotemporally organized patterns of 
neural activity, as one possible mechanism through which distant or distributed brain regions 
coordinate computational processes to facilitate cognition. However, it remains unclear how such 
structured dynamics emerge during early development, and whether they can be modeled in 
simplified, yet biologically representative, human-derived in vitro systems. In this study, we used 
hiPSC-derived cortical cultures expressing GABAergic, glutamatergic, and astrocytic molecular 
markers to investigate the spatiotemporal developmental trajectory of spontaneous and 
synchronized network activity. Cultures (n = 1,446) were plated and grown on microelectrode 
arrays (MEAs) to record spiking activity within ~300-second windows throughout 2 to 11 weeks 
post-plating. Preliminary analyses revealed a progressive increase in both spiking and bursting 
frequency during the first 7 weeks of development. Notably, individual cultures diverged into one 
of two distinct developmental profiles: either increasing burst frequency or increasing burst 
duration over time. These early trends suggest heterogeneous but organized modes of network 
maturation and provide a foundation for investigating the emergence of more structured dynamics. 
Ongoing analyses aim to quantify oscillatory (periodic), as well as broadband (aperiodic), 
spectral features, as well as the spatial propagation of these features to characterize how and 
when traveling waves and other meso-scale activity patterns emerge in the development of hiPSC 
cortical cultures. This work introduces a high-throughput, tractable system for studying the 
developmental basis of neural circuit organization that can be leverage to understand divergence 
from neurotypical development in cultures derived from patients affected by neurodevelopmental 
disorders. 
Keywords: traveling waves, oscillations, human induced pluripotent stem cell, neurodevelopment 
 
I. Introduction 
 Across cognitive functions, perceptual states, and levels of consciousness, temporally 
coordinated neural activity is essential for enabling organization in what would otherwise be a 
chaotic exchange among the brain’s 80 billion neurons.  Coordination at this scale can take 
different forms, be it in the brief but nearly simultaneous activation of a population leading to what 
is known as a population/network burst, or in the more sustained and recurrent rise and fall of a 
population’s activity known as a neural oscillation. These temporally organized phenomena 
provide a mechanism through which neural populations represent and transmit complex 
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information, and have been fundamentally linked with cognition and behavior in both healthy and 
diseased brain activity (Buzsaki et al., 2004; Kim et al., 2019; Wang, 2010; Xie et al., 2024). 
Synchronized activity like neural oscillations are also thought to play an essential role in early 
cortical development by guiding circuit formation, synaptic refinement, and the emergence of 
functional connectivity (Khazipov & Luhmann, 2006; Gireesh & Plenz, 2008; Ben-Ari, 2002). 
While rhythmic oscillations across brain regions have a rich history of exploration in neuroscience 
studies, only relatively recently have the spatial characteristics of these phenomena garnered 
attention. 

Traveling Waves. Traditionally, neural oscillations have been studied under the 
assumption of synchronized phases that are temporally anchored across participating populations. 
However, recent studies examining the full spatiotemporal structure of rhythmic activity have 
revealed that this synchronization can be more dynamic than rigid, involving continuously shifting 
phase offsets across spatially distributed neural populations—a phenomenon now referred to as 
traveling waves (Muller et al., 2018). Like oscillations, these traveling waves have also been 
functionally linked to different cognitive processes like working memory, visual processing, and 
reward representation, in both cortical and subcortical brain regions (Bhattacharya et al., 2022; 
Sreekumar et al. 2020; Davis et al., 2020; Zabeh et al., 2023). However, unlike oscillations, the 
physiological mechanisms that give rise to traveling waves remain largely unknown. One proposed 
theory suggests that they are an emergent property of axonal conduction delays in topographically 
organized networks, and may even spontaneously manifest during a range of asynchronous states 
of activity. (Davis et al., 2021). Studies have also shown that traveling waves exhibit substantial 
variability in their propagation direction, speed, and spatial form, with observed patterns including 
planar, spiral, and concentric geometries, each associated with distinct functional roles (Muller et 
al., 2018; Das et al., 2024; Xu et al., 2023). Despite growing interest in the mechanistic and 
functional origins of traveling waves, studies are limited in their ability to interrogate the 
developmental trajectories of such electrophysiological activity in vivo. As a result, the question 
of how traveling waves emerge and evolve within early-developing neural circuits remains 
unresolved. 
 Human Induced Pluripotent Stem Cells. The inaccessibility of human neural tissue during 
the earliest stages of neurodevelopment has driven the search for valid in vitro models, leading to 
the rise of human induced pluripotent stem cells (hiPSCs) as a promising platform for studying the 
electrophysiological characteristics of early neural circuit formation. These human-derived cell 
cultures are developed through the reprogramming of differentiated fibroblasts (though more 
accessible donor cell types are now also used) into pluripotent stem cells, which are then 
differentiated into neural progenitor cells (Shi et al., 2012). In the appropriate culture conditions, 
neural progenitor cells can generate a variety of neuronal and glia subtypes, including 
glutamatergic, GABAergic, dopaminergic, and astrocytic cells (Pelkonen et al., 2021). 
Importantly, these neural cultures retain their electrophysiological functioning and, depending on 
the cell types and relative proportions, can show a variety of spontaneous activity (Cerina et al., 
2023). Additionally, technological advancements in multi-electrode array (MEA) devices have 
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enabled the high spatial and temporal resolution recording of hiPSC culture activity, without the 
need to disturb or compromise the structure or developmental trajectory of the culture. As the 
neural circuits in these cultures mature, synchronous and asynchronous patterns of activity emerge 
that, to a certain extent, recapitulate electrophysiological patterns observed in vivo (Kuijlars et al., 
2016; Doorn et al., 2024), making hiPSC-derived neural tissue a promising avenue for 
investigating both neurodevelopment and disease pathology. 
 The Present Study. Despite an increasing number of recent studies exploring the 
electrophysiological properties of hiPSC-derived cortical tissue, the author of this paper knows of 
no published work investigating the emergence or evolution of traveling waves in these models. 
Because the underlying mechanisms of traveling waves remain mysterious, the simplified, highly 
controlled, and high-throughput advantages of hiPSC cortical models may offer unique insights 
into the basic origins of traveling waves, and may also be useful for furthering our understanding 
of mechanisms involved in the shaping of early development neural circuits. In light of this, the 
present study aims to leverage the advantages of in vitro models to resolve the spatiotemporal 
characteristics of spontaneous synchronous and asynchronous activity within hiPSC-derived 
cortical tissue. While this study is ongoing, preliminary results suggest distinct developmental 
trajectories for spiking and network burst activity in these cultures, which lay the foundation for 
future exploration of the emergence and possibly maturation of traveling waves in a novel 
experimental context. 
 
II. Materials 
 Data Overview. Through collaboration with the lab of Dr. Ann Bang at the Sanford 
Consortium, we received spike timing data from hiPSC cultures generated with approximately 
60% glutamatergic, 12% GABAergic, 12% dopaminergic, and 10% astrocyte cell types. 
Immunostaining was performed to confirm cell type proportions, in addition to the presence of 
both pre- and postsynaptic protein markers to confirm functional synaptic connectivity within the 
networks. Cultures were grown on Axion Biosystems 48-well MEA plates (each well’s MEA was 
a 4x4 grid of electrodes totaling 16 channels for recording) of which there were 8 plates (384 
unique wells) recorded during weeks 2 to 11 after plating. MEA recordings were performed at 
weekly intervals for ~300 seconds with a sample rate of 12.5 kHz. Not every plate was recorded 
at every weekly timepoint, but in total there were 2,016 well recordings across the 10 timepoints 
(see Figure 3 for sample sizes at each time point).  

Exclusion Criteria. For the purposes of analyzing spatiotemporal dynamics, a custom 
exclusion criterion was implemented to serve both as a quality control measure and to ensure that 
wells included in the analysis were at least minimally active over an area of the MEA sufficient to 
allow spatial patterns to be observed. At any timepoint, if a well did not exceed a mean spike 
frequency greater than 5 Hz or the MEA did not show more than 4 channels (25%) with any amount 
of spiking activity (>1 spike during recording), that recording was excluded from the overall 
analysis. Post exclusion, there were a total of 1,446 well recordings across the 10 timepoints. 



 5 

Computational Tools. Spike timestamp data was extracted from data structures using 
MATLAB, with careful consideration for ensuring that spatial relationships among MEA channels 
were preserved during formatting. All analyses and data visualizations were performed in Python 
using custom scripts, with the exception of the MaxInterval algorithm for detecting single-channel 
bursts, which was adapted from Kartik Pradeepan’s open-source code (Pradeepan, 2022). 
Additional python libraries incorporated in the analysis pipeline include numpy and pandas (data 
handling), scipy and statsmodels (computational operations and statistical analyses), and 
matplotlib and seaborn (data visualization). 
 
III. Methods 
 Spiking Activity. Spike frequency was calculated by summing the total number of spike 
occurrences across all 16 channels in a given well and dividing by the length of the recording 
(seconds). A stacked histogram of spike frequency distributions at each timepoint was generated 
to assess data quality. Mean spike frequencies were calculated for each individual timepoint and 
visualized to identify any preliminary developmental trends.  

Single-Channel Bursts. Burst detection on individual electrodes was performed using the 
MaxInterval algorithm, a rule-based method that identifies bursts by evaluating inter-spike 
intervals (ISIs) within a spike train. A single-channel burst was defined as a contiguous series of 
spikes meeting all of the following criteria which were adapted from the work of Cotterill et al. 
(2016) comparing approaches and parameters for robust burst detection: maximum ISI to initiate 
burst = 0.2 seconds, maximum ISI to end burst = 0.3 seconds, minimum inter-burst interval = 0.2 
seconds, minimum burst duration = 10 milliseconds, minimum spikes per burst = 5. Each spike 
train (from each electrode in each well) was passed through this algorithm to generate a list of 
burst events, which were used to create per-well dictionaries of burst start and end times for each 
channel (Figure 1B).  

Network Bursts. Network bursts were defined as periods of widespread, overlapping 
bursting activity across electrodes within a single well. To identify episodes of synchronized 
activity at the network level across each well, a custom method was implemented to detect network 
bursts based on the temporal overlap of single-channel bursts across the MEA. For each well, the 
number of active electrodes (channels that detected least one spike during the recording) were 
stored and a binary burst matrix was created with dimensions [4 × 4 × number of samples], where 
each entry indicated whether a given channel was engaged in a burst at each sample index during 
the recording. This matrix was summed across spatial dimensions to yield a time series 
representing the number of electrodes simultaneously bursting at each sample. The initiation of a 
network burst was defined as any sample index for which at least 50% of total active electrodes 
for a well were bursting, and was terminated when this number dropped below 20%. Bursts 
occurring within 1 second of each other were merged, after which any burst shorter than 0.5 
seconds in duration was discarded (Figure 1A). For each detected network burst, the start and end 
sample indices were stored in dictionaries, and well-level summary features were computed, 
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including: network burst count (total number of detected network bursts), network burst frequency 
(network burst count divided by total recording duration), and mean network burst duration. 
 
 
 
A 
 
 
 
 
B 

 
 
 
 
 
 
 

Figure 1. Example structure of spiking data for a single well during part of a recording with burst detection 
algorithm output overlayed. (A) Network Activity Histogram across time showing regular transient spiking 
events resulting from synchronized activity across channels. Network histograms are density-scaled, and 
reflect aggregated spikes across all 16 MEA channels. Orange windows are detected network burst events. 
(B) Raster plot of recorded spikes from all 16 channels of MEA across time. Blue windows are detected 
single channel burst events. 

 
Statistical Modeling. To assess developmental changes in neural activity features (e.g., 

spike frequency, network burst frequency, and network burst duration), linear mixed-effects 
(LME) models were implemented using the statsmodels package in Python. LME models were 
selected due to their suitability for handling imbalanced and incomplete sampling across 
timepoints (not all plates were recorded at every week, and wells meeting the exclusion criterion 
were discarded from analysis, resulting in variable and discontinuous samples across recording 
weeks). These models accounted for repeated measurements from the same wells and controlled 
for non-independence introduced by the experimental design. For each model, the developmental 
timepoint (weeks 2–11) was treated as a fixed effect, and random intercepts were specified for 
each well using a combined plate-well identifier (Plate_Well_ID). The general model structure 
was: 

  Feature ~ Timepoint + (1 | Plate_Well_ID) 

To characterize how developmental trends evolved over time, this model was fit across a series of 
increasing time windows (e.g., weeks 2–5, 2–6, …, 2–11). This strategy enabled evaluation of 
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whether early trends stabilized, intensified, or reversed as additional later timepoints were 
included, providing finer-grained insight into the trajectory of network activity maturation. 

 
IV. Results 
 Spiking Analysis. For the 1,446 recordings passing the exclusion criteria across the 10 
week period starting with week 2, spike frequency histograms showed visibly increasing 
distributional variability from weeks 2 to 6, with a breakdown in unimodality after week 6 (Figure 
2).  Mean and median spike frequency for each time point increased steadily from week 2 to week 
8, with a notable upward shift in week 3 (Figure 3). The linear mixed effects model reflected this 
trend, and showed that, relative to week 2, spike frequency was significantly higher at all 
subsequent timepoints, with the largest fixed effect observed at week 8 (β = 4.01, SE = 0.33, p < 
0.001; Figure 4; Table 1). Coefficients remained significant through week 11, though a downward 
trend was observed after the peak. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Spike frequency (average incidence of spiking in hertz) distributions for all wells from week 2 to 
9. Each panel includes the sample size (n), mean (μ, red dashed line), and median (med, yellow line) spike 
frequency for that timepoint. Over development, the distributions become broader and more variable, 
particularly between weeks 2 and 6, after which sample size declines and variability appears to taper. The 
shift from unimodal to right-skewed distributions shows  increasing heterogeneity in spiking activity across 
wells as networks mature. 
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Figure 3. Average spike frequency across developmental timepoints. Each point represents the mean spike 
frequency (Hz) of a single well, color-coded by the proportion of active electrodes (% channels with ≥1 
spike). Orange line indicates the population mean at each week, while black bars represent the median ± 
interquartile range (IQR). Triangular markers highlight extreme outliers (>160 Hz). Sample sizes (n) are 
shown along the x-axis. Spike frequency generally increased from weeks 2 to 8 before declining, 
suggesting an early developmental rise in excitability followed by a stabilization or dropout of high-activity 
wells. 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Linear mixed-effects model coefficients for spike frequency across increasing developmental 
windows. Each bar represents the estimated fixed-effect coefficient (Hz/week) of timepoint on spike 
frequency within the specified developmental window. Error bars indicate standard error of the estimate. 
The slope increased from early windows (2–5) to a peak at 2–8, then declined in later windows. 
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Table 1. Statistical estimates from the linear mixed-effects models shown in Figure 4. Coefficients 
represent the estimated fixed-effect of developmental timepoint (Hz/week) on spike frequency within each 
window. Standard errors (SE), 95% confidence intervals, p-values, and sample sizes (n_obs) are reported 
for each model. 

 

Network Burst Analysis. Network burst frequency and duration were calculated for each 
well across the 10-week recording period. Burst frequency increased from week 2, peaked at week 
6, and declined through week 11 (Figure 5A). Burst duration increased more gradually and peaked 
later, at week 8, before declining in the final timepoints (Figure 5B). 

To evaluate these developmental trends statistically, linear mixed-effects models were fit 
over increasing developmental time windows from weeks 2 to 5 through 2 to 11. The model for 
burst frequency yielded a peak slope in the 2–8 week window (β = 0.00445 Hz/week, SE = 
0.00055, p < 0.001; Table 2; Figure 6A), consistent with the observed trajectory. The model for 
burst duration showed the strongest positive slope in the 2–7 week window (β = 0.95 s/week, SE 
= 0.069, p < 5.0e–43), after which the effect size declined (Table 2; Figure 6B). 
 
V. Discussion 

The present study characterized the basic developmental progression of spontaneous 
spiking and bursting activity in hiPSC-derived cortical cultures over a 10-week period. Analyses 
revealed nonlinear developmental trajectories in both spike frequency and network-level burst 
features, offering insight into the maturation of coordinated activity in a simplified in vitro model 
of human cortical tissue. Spiking activity in these cultures increased steadily during the early stages 
of development, with a clear peak in network maturation occurring around weeks 7 to 8. This 
pattern suggests ongoing structural or synaptic changes that support greater excitability and signal 
propagation across the network. Parallel increases in coordinated activity like network burst 
frequency and duration further suggest that these developing networks undergo circuit-level 
refinements that promote coordinated population dynamics. Because burst frequency and duration 
are inversely related (in a finite time window, higher frequency events must be shorter in duration), 
the data points to heterogeneous modes of development, wherein some networks begin sustaining 
longer network burst events and others produce increasingly shorter but more frequent bursts 
 

weeks coef se 95% ci_lower 95% ci_upper p n_obs 

2-5 1.044 0.409 0.243 1.845 0.011 956 

2-6 2.764 0.343 2.092 3.435 0.000 1125 

2-7 3.592 0.312 2.981 4.203 0.000 1287 

2-8 4.005 0.327 3.364 4.647 0.000 1354 

2-9 2.937 0.301 2.346 3.528 0.000 1415 

2-10 2.458 0.291 1.888 3.027 0.000 1435 

2-11 2.153 0.284 1.597 2.709 0.000 1446 
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Figure 5. Distribution of (A) network burst frequency and (B) duration across developmental timepoints. 
Boxplots show median, interquartile range, and outliers for each week from 2 to 11. Pink triangles indicate 
extreme outliers with burst frequency greater than 0.2 Hz. 
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Figure 6. Linear mixed-effects model coefficients for (A) network burst frequency and (B) network burst 
duration across increasing developmental windows. Each bar reflects the estimated fixed-effect 
coefficient of time (in Hz/week for frequency, s/week for duration) on the corresponding burst feature 
within the specified time window. Error bars indicate standard error of the estimate. Developmental 
slopes peaked in the 2–8 window for burst frequency and the 2–7 window for burst duration, followed by 
declines, indicating temporally bounded phases of maturation. 
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Table 2. Statistical estimates from the linear mixed-effects models shown in Figure 6. Coefficients 
represent the estimated fixed-effect of developmental timepoint (Hz/week) on spike frequency within each 
window. Standard errors (SE), 95% confidence intervals, p-values, and sample sizes (n_obs) are reported 
for each model. 

 
Establishing the cellular and molecular mechanisms enabling these electrophysiological 

trends is outside the scope of this project, but it is possible that the observed developmental 
changes are facilitated by processes related to synaptic plasticity, such as long-term potentiation 
and depression. These mechanisms may differentially shape synaptic strength and connectivity 
depending on the types of neurons involved, the specific circuits they form, and the patterns of 
early activity within the network. These trends may also reflect differences in the balance of 
excitation and inhibition in the network, both over the long-term development of the culture and 
during transient network burst events.  
 Important limitations should be considered when interpreting these results, taking into 
account both the experimental constraints and analysis decisions. First, while hiPSCs can serve as 
a useful model for in vivo human cortical tissue, there remain several differences that could limit 
the generalizability of these findings. Structurally, hiPSC cortical cultures are simplified neural 
systems that lack layered, three-dimensional architecture as well as long-range projections to 
distant, diverse cell populations. Additionally, cortical cultures in this experiment are without 

weeks coef se 95% ci_lower 95% ci_upper p n_obs 

Network Burst Frequency     

2-5 -0.001 0.001 -0.002 0.001 0.497 956 

2-6 0.001 0.001 0.000 0.003 0.014 1125 

2-7 0.004 0.001 0.003 0.005 0.000 1287 

2-8 0.004 0.001 0.003 0.006 0.000 1354 

2-9 0.004 0.000 0.003 0.005 0.000 1415 

2-10 0.003 0.000 0.003 0.004 0.000 1435 

2-11 0.003 0.000 0.002 0.004 0.000 1446 

Network Burst Duration     

2-5 0.655 0.068 0.522 0.788 0.000 956 

2-6 0.720 0.067 0.588 0.852 0.000 1125 

2-7 0.950 0.069 0.815 1.085 0.000 1287 

2-8 0.805 0.064 0.680 0.929 0.000 1354 

2-9 0.597 0.058 0.483 0.711 0.000 1415 

2-10 0.507 0.056 0.396 0.617 0.000 1435 

2-11 0.456 0.055 0.348 0.564 0.000 1446 
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external input, and thus do not reflect in vivo systems that might receive stimulation from sensory 
or subcortical sources. Second, limitations to the analysis are introduced in several stages, 
including the exclusion of a subset of inactive cell cultures and the somewhat arbitrary burst 
detection parameters. While this was considered necessary for resolving later spatiotemporal 
characteristics (and robustness of future results will involve testing a variety parameter values), 
only including cultures surpassing a minimum threshold of activity for a minimum number of 
MEA channels could be overrepresenting more excitable or regularly spiking networks, or exclude 
sufficiently active networks that simply do not produce spikes close enough to a majority of the 
recording electrodes. Finally, the present analyses were only focused on simplified metrics of 
hiPSC activity (spike frequency, and network burst frequency and duration), which, while useful 
for describing broad developmental trends, could be missing potentially richer dynamics. 
Nonetheless, these preliminary characterizations lay a necessary foundation for future work 
exploring more complex manifestations of coordinated network activity. 
 Building on these preliminary developmental findings, continued efforts on this project 
will aim to characterize and compare spectral and spatial features of network activity in these same 
hiPSC cultures, looking specifically to map changes in oscillatory activity, including its spatial 
organization, onto developmental trends observed in the present analyses. Ultimately, we hope to 
identify whether traveling waves emerge in hiPSC cortical cultures, and determine which basic 
features of development they coincide with in order to start understanding how different scales of 
spatiotemporal coordination emerge in the human cortex. Identifying the developmental properties 
of traveling waves in vitro could provide valuable insight into the circuit-level mechanisms that 
sculpt cortical networks to support early cognitive function, and may also serve as a comparative 
benchmark for investigating deviations from typical neurodevelopment in patient-derived cell 
lines.  
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